Numerical simulation of Lewis number effects on lean premixed turbulent flames
نویسندگان
چکیده
A dominant factor in determining the burning rate of a premixed turbulent flame is the degree to which the flame front is wrinkled by turbulence. Higher turbulent intensities lead to greater wrinkling of the flame front and an increase in the turbulent burning rate. This picture of turbulent flame dynamics must be modified, however, to accommodate the affects of variations in the local propagation speed of the flame front. Classical flame analysis characterizes these local variations in propagation speed by the Markstein number which represents the response of the flame front to curvature and strain. In this paper, we consider lean premixed flames for three different fuels having widely varying fuel Lewis numbers corresponding to widely varying Markstein numbers. In particular, we present numerical simulations of premixed turbulent flames for lean hydrogen, propane and methane mixtures in two dimensions. Each simulation is performed at turbulence conditions similar to those found in laboratory-scale experiments and is performed using detailed chemical kinetics and transport properties. We discuss the effect of Lewis number on the overall flame morphology and explore the dependence of local flame propagation speed on flame curvature. We also explore the relationship between local flame speed and experimentally accessible variables such as OH concentration. Finally, we focus on the low Lewis number case, hydrogen, in which the flame front is broken indicating local extinction.
منابع مشابه
Influence of Preferential Diffusion in Turbulent Lean Premixed Hydrogen-Rich Syngas Spherical Flames at Elevated Pressure
The objective of this work was to investigate the influence of preferential diffusion on flame structure and propagation of lean-premixed hydrogen-carbon monoxide syngas-air flame at elevated pressure using direct numerical simulation (DNS) and detailed chemistry. The physical problem investigated is lean-premixed H2/CO outwardly propagating turbulent spherical flame at constant pressure of 4ba...
متن کاملThree-Dimensional Direct Numerical Simulation of Turbulent Lean Premixed Methane Combustion with Detailed Kinetics
The interaction of maintained homogeneous isotropic turbulence with lean premixed methane flames is investigated using direct numerical simulation with detailed chemistry. The conditions are chosen to be close to those found in atmospheric laboratory experiments. As the Karlovitz number is increased from 1 to 36, the preheat zone becomes thickened, while the reaction zone remains largely unaffe...
متن کاملA Numerical Study of Diffusive Effects in Turbulent Lean Premixed Hydrogen Flames
Three-dimensional direct numerical simulation of lean premixed hydrogen flames is used to explore the influence of species and thermal diffusion and viscosity on the flame structure and turbulent flame response. The leadingorder flame response is shown to be due to the global Lewis number with little influence from the other species. The previously-reported observation of decorrelation of fuel ...
متن کاملCharacterization of Low Lewis Number Flames
A recent numerical study of turbulence-flame interactions in lean premixed hydrogen, where the Lewis number was approximately 0.36, observed that flames at different equivalence ratios presented significantly different behavior despite having the same Karlovitz and Damköhler numbers. This differing behavior is due to the thermodiffusively-unstable nature of low Lewis number flames. In more than...
متن کاملTurbulence-Flame Interactions in Lean Premixed Dodecane Flames
Turbulent lean premixed dodecane/air flames are simulated in a doubly-periodic domain using detailed kinetics and transport over a range of Karlovitz number. We observe extensive thickening of thermal profiles through the flames that increases with turbulent intensity. The high Lewis number of the flames acts to suppress wrinkling of the flame resulting in considerably lower turbulent flame spe...
متن کامل